Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Sci Adv ; 8(39): eabo3381, 2022 Sep 30.
Article in English | MEDLINE | ID: covidwho-2053087

ABSTRACT

The World Health Organization (WHO) recently released new guidelines for outdoor fine particulate air pollution (PM2.5) recommending an annual average concentration of 5 µg/m3. Yet, our understanding of the concentration-response relationship between outdoor PM2.5 and mortality in this range of near-background concentrations remains incomplete. To address this uncertainty, we conducted a population-based cohort study of 7.1 million adults in one of the world's lowest exposure environments. Our findings reveal a supralinear concentration-response relationship between outdoor PM2.5 and mortality at very low (<5 µg/m3) concentrations. Our updated global concentration-response function incorporating this new information suggests an additional 1.5 million deaths globally attributable to outdoor PM2.5 annually compared to previous estimates. The global health benefits of meeting the new WHO guideline for outdoor PM2.5 are greater than previously assumed and indicate a need for continued reductions in outdoor air pollution around the world.

2.
CMAJ ; 194(20): E693-E700, 2022 05 24.
Article in English | MEDLINE | ID: covidwho-1862287

ABSTRACT

BACKGROUND: The tremendous global health burden related to COVID-19 means that identifying determinants of COVID-19 severity is important for prevention and intervention. We aimed to explore long-term exposure to ambient air pollution as a potential contributor to COVID-19 severity, given its known impact on the respiratory system. METHODS: We used a cohort of all people with confirmed SARS-CoV-2 infection, aged 20 years and older and not residing in a long-term care facility in Ontario, Canada, during 2020. We evaluated the association between long-term exposure to fine particulate matter (PM2.5), nitrogen dioxide (NO2) and ground-level ozone (O3), and risk of COVID-19-related hospital admission, intensive care unit (ICU) admission and death. We ascertained individuals' long-term exposures to each air pollutant based on their residence from 2015 to 2019. We used logistic regression and adjusted for confounders and selection bias using various individual and contextual covariates obtained through data linkage. RESULTS: Among the 151 105 people with confirmed SARS-CoV-2 infection in Ontario in 2020, we observed 8630 hospital admissions, 1912 ICU admissions and 2137 deaths related to COVID-19. For each interquartile range increase in exposure to PM2.5 (1.70 µg/m3), we estimated odds ratios of 1.06 (95% confidence interval [CI] 1.01-1.12), 1.09 (95% CI 0.98-1.21) and 1.00 (95% CI 0.90-1.11) for hospital admission, ICU admission and death, respectively. Estimates were smaller for NO2. We also estimated odds ratios of 1.15 (95% CI 1.06-1.23), 1.30 (95% CI 1.12-1.50) and 1.18 (95% CI 1.02-1.36) per interquartile range increase of 5.14 ppb in O3 for hospital admission, ICU admission and death, respectively. INTERPRETATION: Chronic exposure to air pollution may contribute to severe outcomes after SARS-CoV-2 infection, particularly exposure to O3.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/adverse effects , Air Pollution/adverse effects , Air Pollution/analysis , COVID-19/epidemiology , Cohort Studies , Environmental Exposure/adverse effects , Humans , Nitrogen Dioxide/adverse effects , Nitrogen Dioxide/analysis , Ontario/epidemiology , Particulate Matter/adverse effects , Particulate Matter/analysis , Prospective Studies , SARS-CoV-2
3.
Nature ; 601(7893): 380-387, 2022 01.
Article in English | MEDLINE | ID: covidwho-1631307

ABSTRACT

Nitrogen dioxide (NO2) is an important contributor to air pollution and can adversely affect human health1-9. A decrease in NO2 concentrations has been reported as a result of lockdown measures to reduce the spread of COVID-1910-20. Questions remain, however, regarding the relationship of satellite-derived atmospheric column NO2 data with health-relevant ambient ground-level concentrations, and the representativeness of limited ground-based monitoring data for global assessment. Here we derive spatially resolved, global ground-level NO2 concentrations from NO2 column densities observed by the TROPOMI satellite instrument at sufficiently fine resolution (approximately one kilometre) to allow assessment of individual cities during COVID-19 lockdowns in 2020 compared to 2019. We apply these estimates to quantify NO2 changes in more than 200 cities, including 65 cities without available ground monitoring, largely in lower-income regions. Mean country-level population-weighted NO2 concentrations are 29% ± 3% lower in countries with strict lockdown conditions than in those without. Relative to long-term trends, NO2 decreases during COVID-19 lockdowns exceed recent Ozone Monitoring Instrument (OMI)-derived year-to-year decreases from emission controls, comparable to 15 ± 4 years of reductions globally. Our case studies indicate that the sensitivity of NO2 to lockdowns varies by country and emissions sector, demonstrating the critical need for spatially resolved observational information provided by these satellite-derived surface concentration estimates.


Subject(s)
Atmosphere/chemistry , COVID-19/epidemiology , COVID-19/prevention & control , Communicable Disease Control/statistics & numerical data , Environmental Indicators , Nitrogen Dioxide/analysis , Altitude , Humans , Ozone/analysis , Quarantine/statistics & numerical data , Satellite Imagery , Time Factors
4.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Article in English | MEDLINE | ID: covidwho-1510693

ABSTRACT

The COVID-19 global pandemic and associated government lockdowns dramatically altered human activity, providing a window into how changes in individual behavior, enacted en masse, impact atmospheric composition. The resulting reductions in anthropogenic activity represent an unprecedented event that yields a glimpse into a future where emissions to the atmosphere are reduced. Furthermore, the abrupt reduction in emissions during the lockdown periods led to clearly observable changes in atmospheric composition, which provide direct insight into feedbacks between the Earth system and human activity. While air pollutants and greenhouse gases share many common anthropogenic sources, there is a sharp difference in the response of their atmospheric concentrations to COVID-19 emissions changes, due in large part to their different lifetimes. Here, we discuss several key takeaways from modeling and observational studies. First, despite dramatic declines in mobility and associated vehicular emissions, the atmospheric growth rates of greenhouse gases were not slowed, in part due to decreased ocean uptake of CO2 and a likely increase in CH4 lifetime from reduced NO x emissions. Second, the response of O3 to decreased NO x emissions showed significant spatial and temporal variability, due to differing chemical regimes around the world. Finally, the overall response of atmospheric composition to emissions changes is heavily modulated by factors including carbon-cycle feedbacks to CH4 and CO2, background pollutant levels, the timing and location of emissions changes, and climate feedbacks on air quality, such as wildfires and the ozone climate penalty.


Subject(s)
Air Pollution , Atmosphere/chemistry , COVID-19/psychology , Greenhouse Gases , Models, Theoretical , COVID-19/epidemiology , Carbon Dioxide , Climate Change , Humans , Methane , Nitrogen Oxides , Ozone
5.
Sci Adv ; 7(26)2021 Jun.
Article in English | MEDLINE | ID: covidwho-1288337

ABSTRACT

Lockdowns during the COVID-19 pandemic provide an unprecedented opportunity to examine the effects of human activity on air quality. The effects on fine particulate matter (PM2.5) are of particular interest, as PM2.5 is the leading environmental risk factor for mortality globally. We map global PM2.5 concentrations for January to April 2020 with a focus on China, Europe, and North America using a combination of satellite data, simulation, and ground-based observations. We examine PM2.5 concentrations during lockdown periods in 2020 compared to the same periods in 2018 to 2019. We find changes in population-weighted mean PM2.5 concentrations during the lockdowns of -11 to -15 µg/m3 across China, +1 to -2 µg/m3 across Europe, and 0 to -2 µg/m3 across North America. We explain these changes through a combination of meteorology and emission reductions, mostly due to transportation. This work demonstrates regional differences in the sensitivity of PM2.5 to emission sources.

6.
Environ Int ; 154: 106564, 2021 09.
Article in English | MEDLINE | ID: covidwho-1174221

ABSTRACT

BACKGROUND: Ecologic analyses suggest that living in areas with higher levels of ambient fine particulate matter air pollution (PM2.5) is associated with higher risk of adverse COVID-19 outcomes. Studies accounting for individual-level health characteristics are lacking. METHODS: We leveraged the breadth and depth of the US Department of Veterans Affairs national healthcare databases and built a national cohort of 169,102 COVID-19 positive United States Veterans, enrolled between March 2, 2020 and January 31, 2021, and followed them through February 15, 2021. Annual average 2018 PM2.5 exposure, at an approximately 1 km2 resolution, was linked with residential street address at the year prior to COVID-19 positive test. COVID-19 hospitalization was defined as first hospital admission between 7 days prior to, and 15 days after, the first COVID-19 positive date. Adjusted Poisson regression assessed the association of PM2.5 with risk of hospitalization. RESULTS: There were 25,422 (15.0%) hospitalizations; 5,448 (11.9%), 5,056 (13.0%), 7,159 (16.1%), and 7,759 (19.4%) were in the lowest to highest PM2.5 quartile, respectively. In models adjusted for State, demographic and behavioral factors, contextual characteristics, and characteristics of the pandemic a one interquartile range increase in PM2.5 (1.9 µg/m3) was associated with a 10% (95% CI: 8%-12%) increase in risk of hospitalization. The association of PM2.5 and risk of hospitalization among COVID-19 individuals was present in each wave of the pandemic. Models of non-linear exposure-response suggested increased risk at PM2.5 concentrations below the national standard 12 µg/m3. Formal effect modification analyses suggested higher risk of hospitalization associated with PM2.5 in Black people compared to White people (p = 0.045), and in those living in socioeconomically disadvantaged neighborhoods (p < 0.001). CONCLUSIONS: Exposure to higher levels of PM2.5 was associated with increased risk of hospitalization among COVID-19 infected individuals. The risk was evident at PM2.5 levels below the regulatory standards. The analysis identified those of Black race and those living in disadvantaged neighborhoods as population groups that may be more susceptible to the untoward effect of PM2.5 on risk of hospitalization in the setting of COVID-19.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/adverse effects , Air Pollutants/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Cohort Studies , Environmental Exposure/analysis , Hospitalization , Humans , Particulate Matter/adverse effects , Particulate Matter/analysis , SARS-CoV-2 , United States/epidemiology
7.
Sci Total Environ ; 760: 143391, 2021 Mar 15.
Article in English | MEDLINE | ID: covidwho-1078167

ABSTRACT

It has been posited that populations being exposed to long-term air pollution are more susceptible to COVID-19. Evidence is emerging that long-term exposure to ambient PM2.5 (particulate matter with aerodynamic diameter 2.5 µm or less) associates with higher COVID-19 mortality rates, but whether it also associates with the speed at which the disease is capable of spreading in a population is unknown. Here, we establish the association between long-term exposure to ambient PM2.5 in the United States (US) and COVID-19 basic reproduction ratio R0- a dimensionless epidemic measure of the rapidity of disease spread through a population. We inferred state-level R0 values using a state-of-the-art susceptible, exposed, infected, and recovered (SEIR) model initialized with COVID-19 epidemiological data corresponding to the period March 2-April 30. This period was characterized by a rapid surge in COVID-19 cases across the US states, implementation of strict social distancing measures, and a significant drop in outdoor air pollution. We find that an increase of 1 µg/m3 in PM2.5 levels below current national ambient air quality standards associates with an increase of 0.25 in R0 (95% CI: 0.048-0.447). A 10% increase in secondary inorganic composition, sulfate-nitrate-ammonium, in PM2.5 associates with ≈10% increase in R0 by 0.22 (95% CI: 0.083-0.352), and presence of black carbon (soot) in the ambient environment moderates this relationship. We considered several potential confounding factors in our analysis, including gaseous air pollutants and socio-economical and meteorological conditions. Our results underscore two policy implications - first, regulatory standards need to be better guided by exploring the concentration-response relationships near the lower end of the PM2.5 air quality distribution; and second, pollution regulations need to be continually enforced for combustion emissions that largely determine secondary inorganic aerosol formation.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/analysis , Environmental Exposure/analysis , Humans , Particulate Matter/analysis , SARS-CoV-2 , United States/epidemiology
8.
Sci Adv ; 6(49)2020 12.
Article in English | MEDLINE | ID: covidwho-983587

ABSTRACT

Changes in CO2 emissions during the COVID-19 pandemic have been estimated from indicators on activities like transportation and electricity generation. Here, we instead use satellite observations together with bottom-up information to track the daily dynamics of CO2 emissions during the pandemic. Unlike activity data, our observation-based analysis deploys independent measurement of pollutant concentrations in the atmosphere to correct misrepresentation in the bottom-up data and can provide more detailed insights into spatially explicit changes. Specifically, we use TROPOMI observations of NO2 to deduce 10-day moving averages of NO x and CO2 emissions over China, differentiating emissions by sector and province. Between January and April 2020, China's CO2 emissions fell by 11.5% compared to the same period in 2019, but emissions have since rebounded to pre-pandemic levels before the coronavirus outbreak at the beginning of January 2020 owing to the fast economic recovery in provinces where industrial activity is concentrated.


Subject(s)
COVID-19/epidemiology , Carbon Dioxide/analysis , Pandemics , Satellite Communications , China/epidemiology , Geography , Nitrates/analysis , SARS-CoV-2/physiology
9.
Health Rep ; 31(3):14-26, 2020.
Article in English | MEDLINE | ID: covidwho-662158

ABSTRACT

BACKGROUND: Immigrants make up 20% of the Canadian population;however, little is known about the mortality impacts of fine particulate matter (PM2.5) air pollution on immigrants compared with non-immigrants, or about how impacts may change with duration in Canada. DATA AND METHODS: This study used the 2001 Canadian Census Health and Environment Cohort, a longitudinal cohort of 3.5 million individuals, of which 764,000 were classified as immigrants (foreign-born). Postal codes from annual income tax files were used to account for mobility among respondents and to assign annual PM2.5 concentrations from 1998 to 2016. Exposures were estimated as a three-year moving average prior to the follow-up year. Cox survival models were used to determine hazard ratios (HRs) for cause-specific mortality, comparing the Canadian and foreign-born populations, with further stratification by year of immigration grouped into 10-year cohorts. RESULTS: Differences in urban-rural settlement patterns resulted in greater exposure to PM2.5 for immigrants compared with non-immigrants (mean = 9.3 vs. 7.5 µg/m3), with higher exposures among more recent immigrants. In fully adjusted models, immigrants had higher HRs per 10 µg/m3 increase in PM2.5 concentration compared with Canadian-born individuals for cardiovascular mortality (HR [95% confidence interval] = 1.22 [1.12 to 1.34] vs. 1.12 [1.07 to 1.18]) and cerebrovascular mortality (HR = 1.25 [1.03 to 1.52] vs. 1.03 [0.93 to 1.15]), respectively. However, tests for differences between the two groups were not significant when Cochran's Q test was used. No significant associations were found for respiratory outcomes, except for lung cancer in non-immigrants (HR = 1.10 [1.02 to 1.18]). When stratified by year of immigration, differences in HRs across varied by cause of death. DISCUSSION: In Canada, PM2.5 is an equal-opportunity risk factor, with immigrants experiencing similar if not higher mortality risks compared with non-immigrants for cardiovascular-related causes of death. Some notable differences also existed with cerebrovascular and lung cancer deaths. Continued reductions in air pollution, particularly in urban areas, will improve the health of the Canadian population as a whole.

SELECTION OF CITATIONS
SEARCH DETAIL